Quantitative proteomics analysis with iTRAQ in human lenses with nuclear cataracts of different axial lengths

نویسندگان

  • Haiyan Zhou
  • Hong Yan
  • Weijia Yan
  • Xinchuan Wang
  • Yong Ma
  • Jianping Wang
چکیده

PURPOSE The goal of this study was to identify and quantify the differentially expressed proteins in human nuclear cataract with different axial lengths. METHODS Thirty-six samples of human lens nuclei with hardness grade III or IV were obtained during cataract surgery with extracapsular cataract extraction (ECCE). Six healthy transparent human lens nuclei were obtained from fresh healthy cadaver eyes during corneal transplantation surgery. The lens nuclei were divided into seven groups (six lenses in each group) according to the optic axis: Group A (mean axial length 28.7±1.5 mm; average age 59.8±1.9 years), Group B (mean axial length 23.0±0.4 mm; average age 60.3±2.5 years), Group C (mean axial length 19.9±0.5 mm; average age 55.1±2.5 years), Group D (mean axial length 28.7±1.4 mm; average age 58.0±4.0 years), Group E (mean axial length 23.0±0.3 mm; average age 56.9±4.2 years), and Group F (mean axial length 20.7±0.6 mm; average age 57.6±5.3 years). The six healthy transparent human lenses were included in a younger group with standard optic axes, Group G (mean axial length 23.0±0.5 mm; average age 34.7±4.2 years).Water-soluble, water-insoluble, and water-insoluble-urea-soluble protein fractions were extracted from the samples. The three-part protein fractions from the individual lenses were combined to form the total proteins of each sample. The proteomic profiles of each group were analyzed using 8-plex isobaric tagging for relative and absolute protein quantification (iTRAQ) labeling combined with two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS). The data were analyzed with ProteinPilot software for peptide matching, protein identification, and quantification. Differentially expressed proteins were validated with western blotting. RESULTS We employed biological and technical replicates and selected the intersection of the two sets of results, which included 40 proteins. From the 40 proteins identified, six were selected as differentially expressed proteins closely related to axial length. The six proteins were gap junction alpha-3 protein, beta-crystallin B2, T-complex protein 1 subunit beta, gamma-enolase, pyruvate kinase isozymes M1/M2, and sorbitol dehydrogenase. Levels of beta-crystallin B2 expression were decreased in nuclear cataracts with longer axial length. The results of the mass spectrometric analysis were consistent with the western blot validation. CONCLUSION The discovery of these differentially expressed proteins provides valuable clues for understanding the pathogenesis of axial-related nuclear cataract. The results indicate that beta-crystallin B2 (CRBB2) may be involved in axial-related nuclear cataract pathogenesis. Further studies are needed to investigate the correlation between CRBB2 and axial-related nuclear cataract.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axial length: a risk factor for cataractogenesis.

INTRODUCTION To evaluate whether eyes with longer axial lengths are associated more often with clinically significant cataracts than eyes with shorter axial lengths. MATERIAL AND METHODS Charts of consecutive patients who underwent cataract surgery by 4 resident surgeons at Los Angeles County Hospital from July 2001 through May 2002 were retrospectively reviewed. Those patients whose axial le...

متن کامل

Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy

BACKGROUND Compaction of human ocular lens fiber cells as a function of both aging and cataractogenesis has been demonstrated previously using scanning electron microscopy. The purpose of this investigation is to quantify morphological differences in the inner nuclear regions of cataractous and non-cataractous human lenses from individuals with diabetes. The hypothesis is that, even in the pres...

متن کامل

Improved Precision of iTRAQ and TMT Quantification by an Axial Extraction Field in an Orbitrap HCD Cell

Improving analytical precision is a major goal in quantitative differential proteomics as high precision ensures low numbers of outliers, a source of false positives with regard to quantification. In addition, higher precision increases statistical power, i.e., the probability to detect significant differences. With chemical labeling using isobaric tags for relative and absolute quantitation (i...

متن کامل

Determination of the density of human nuclear cataract lenses

The aim of the present study was to detect senile nuclear cataract lens density and provide a quantitative measurement of lens density for the long-term clinical observation of cataracts. An Anterior Segment Analysis System was used to detect the lens density of 422 simple senile cataract eyes and normal contralateral eyes. The density values were taken at the optical axis at various depths mea...

متن کامل

Na,K-ATPase in simulated eye bank and cryoextracted rabbit lenses, and human eye bank lenses and cataracts.

In the rabbit, cryoextraction of the lens and subsequent storage in Tyrode's solution did not alter the Na,K-ATPase activity from that determined in immediately excised rabbit lenses. Similarly, the procedures employed with the rabbit eye to simulate collection and storage of normal human eyes (eye banking) had no effect upon the Na,K-ATPase activity of the lens. These results permitted the inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2016